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Abstract. The reliability of the pseudospin symmetry (PSS) in atomic nuclei is analyzed in the framework
of the relativistic Hartree approach. We find that the nuclear surface strongly increases the effect of the
pseudospin-orbit potential (PSOP), spoiling the possibility of the exact realization of the PSS even in the
limit of a vanishing PSOP. It is also shown that the PSS cannot be explained by the fact that ΣS � −Σ0.
New arguments to explain the PSS in finite nuclei are given. The important role the spin-orbit interaction
plays in the achievement of the PSS is also discussed.

PACS. 24.10.Jv Relativistic models – 21.60.Cs Shell model – 21.10.Pc Single-particle levels and strength
functions – 24.80.+y Nuclear tests of fundamental interactions and symmetries

1 Introduction

In the recent years considerable attention has been paid in
nuclear physics to the pseudospin symmetry (PSS) [1–16].
Each two single-particle states of a nucleus labelled by “a”
and “b” with the quantum numbers na, la, ja = la + 1/2
and nb = na − 1, lb = la + 2, jb = la + 3/2, where n, l,
and j are the radial, orbital and total angular-momentum
quantum numbers, respectively, make a pseudospin dou-
blet (PSD). If the PSS were exact, the two states a and
b would be degenerate. Thus, in the pseudospin formal-
ism, the same pseudo-orbital angular-momentum quan-
tum number l̃ = l̃a = l̃b = la + 1 = lb − 1 is assigned to
these two states. In a more general form l̃ is defined as
l̃ = (2j − l).

Though the idea of the PSS appeared many years ago,
only recently several authors have established that the
PSS has its origin in the relativistic symmetry of the Dirac
equation (see refs. [3–12], and references therein). Ginoc-
chio realized that l̃ is identical to the relativistic quantum
number l′ of the small component F (r) of the nucleon
Dirac spinor and he attributed to this fact a key role in
the PSS [4].

At present, the understanding of the PSS in the frame-
work of the single-particle relativistic models1 is based on

a e-mail: Marcoss@unican.es
1 Until now, the relativistic self-consistent models used to

investigate the PSS have been restricted to the mean-field ap-

the following hypotheses: 1) The nucleons inside the nu-
cleus move in a scalar ΣS and vector Σ0 potentials which
are almost equal in magnitude but have different signs, so
that ΣS +Σ0 is small enough to consider the PSS slightly
broken in nuclei [3–7]. 2) In the limit of small pseudospin-
orbit potential (PSOP) the PSS becomes exact [8–11].
3) The PSOP is small enough to justify the PSS [8–11].

The aim of this work is: A) To show that these three
commonly accepted statements fail to describe PSS in fi-
nite nuclei because of the nuclear surface. B) To propose
a new explanation of the PSS quite different from the one
commonly accepted.

In sect. 2, we write the basic Dirac equation in the rel-
ativistic Hartree approximation (or relativistic mean-field
approximation) [13–18], and discuss the interpretation of
the PSS on the grounds of the equivalent Schrödinger-
like equation for the small component of the Dirac spinor.
In sect. 3, the nature of the PSS in finite nuclei is in-
vestigated. Firstly, we consider a mathematical extension
of this latter equation and we apply it in sect. 3.1 to
non-physical situations in order to study the properties
of the bound-state solutions of a quite general hypothet-
ical model satisfying two kinds of exact PSS. The role of
the nuclear surface in the PSS is analyzed in detail. In
sect. 3.2, new arguments to interpret the PSS are given.

proximation, with the only exception of a work made by our
group using the relativistic Hartee-Fock approximation [14].
We shall not refer here to this work, where the Fock terms
bring important qualitative features to the PSS.
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In sect. 3.3, the role of some terms breaking the PSS is
discussed. In sect. 3.4, we analyze the relation between
the spin-orbit and pseudospin-orbit schemes. In sect. 3.5,
we give a number of arguments suggesting that the PSS
cannot be justified by the smallness of ΣS + Σ0. Finally,
our conclusions are drawn in sect. 4.

2 The Dirac equation and the pseudospin
symmetry

The simplest relativistic Lagrangians allowing a qualita-
tive description of the fundamental nuclear properties in-
clude the exchange of σ, ω and ρmesons between nucleons.
The corresponding Dirac equation for the single-particle
spinors in the relativistic Hartree approximation yields the
following equations:

d
dr
G(r) = −T G(r) +W F (r),

d
dr
F (r) = V G(r) + T F (r), (1)

where (G/r) and (F/r) represent the radial part of the
upper (big) and lower (small) components of the nucleon
Dirac spinor, respectively.

We have introduced the following notations:

T ≡ κ

r
+ΣT , V ≡ ΣS +Σ0 − ε,

W ≡ 2M + ε+ΣS −Σ0, (2)

where κ ≡ (2j + 1)(l − j) and ε = E −M is the single-
particle energy (SPE) of a nucleon with bare mass M and
relativistic energy E. The quantities ΣS , Σ0, and ΣT are
the scalar, vector, and tensor components of the nucleon
self-energy, respectively. We shall neglect the small com-
ponent ΣT hereafter.

From the Dirac equation (1), one can get the following
second-order differential equation for the small component
F (r) of the nucleon Dirac spinor:

Fκ[F ] ≡ 1
2M

{
− F ′′ +

[
V ′

V

(
F ′

F
− κ

r

)
+
l̃(l̃ + 1)
r2

+2M(ΣS+Σ0) + 2εΣ0 + (Σ2
S−Σ2

0)− ε2
]
F

}
− εF = 0 .

(3)

This equation has the structure of a Schrödinger-like equa-

tion with a pseudo-centrifugal term
[
V̂cf ≡ l̃(l̃+1)

r2

]
and a

potential which includes terms strongly energy dependent
(2εΣ0, ε

2) and state dependent
[

V ′
V

(
F ′
F − κ

r

)]
. Since for

the two states a and b of a PSD we have κa �= κb, the
κ-term [V̂κ ≡ −V ′/V × κ/r] appearing in eq. (3) breaks
the PSS. However, in practice, the PSS can be consid-
ered as an approximate symmetry if |εa − εb|(l̃a=l̃b)

�
|εc−εd|(l̃c �=l̃d). Thus, it has been frequently argued that the

PSS would be expected if the inequality |V̂κ| � V̂cf is satis-
fied [8–11]. In these references, this condition is considered
to be valid because |V ′| = |Σ′

S +Σ′
0| is quite small in nu-

clei. However, the inequality is not satisfied in the nuclear
surface because V (r0) = 0 and V̂κ is singular at r = r0,
having opposite signs for r < r0 and r > r0. Actually,
for r → r0, V ′/V ∼ (r− r0)−1, and although the concrete
value of r0 depends on V , the structure of V ′/V around r0
does not. Thus, for r → r0 V̂κ has always the functional
form κ/(r − r0)r, independent of V !. The contribution
〈F |V̂κ|F 〉 to the SPE (we assume 〈F |F 〉 = 1), which we
shall call the perturbative contribution of V̂κ, is a finite
quantity, obtained as a result of the quasi-cancellation of
two infinite quantities around r0. However, we have found
that, because of the singularity, the self-consistency effects
of the κ term are very important though 〈F |V̂κ|F 〉 can be
quite small in comparison with the contribution of the
pseudo-centrifugal term 〈F |V̂cf |F 〉 [13,14].

3 Nature of the pseudospin symmetry

The Dirac equation (1) and eq. (3) for the small compo-
nent F of the single-particle spinor have physical meaning
only for integer values of κ. However, in order to under-
stand the influence of the κ term on the F function, we
shall consider hereafter eq. (3) just as a mathematical dif-
ferential equation in which the parameter κ appearing in
the κ term becomes a real number denoted by κ̄. However,
we do not modify the definition of l̃. In other words, we
maintain the relation l̃(l̃+1) = κ(κ−1), κ being the inte-
ger quantum number appearing in the Dirac equation (1).
The generalized equation for F reads

Fκ̄[F ] ≡ 1
2M

{
− F ′′ +

[
V ′

V

(
F ′

F
− κ̄

r

)
+
l̃(l̃ + 1)
r2

+2M(ΣS+Σ0) + 2εΣ0 + (Σ2
S−Σ2

0)− ε2
]
F

}
− εF = 0 .

(4)

We can construct a Dirac equation, formally equivalent
to eq. (4), by replacing the nucleon mass M entering W
in eq. (2) by the quantity M̄(r) defined as

M̄(r) ≡M +
V ′

2V 2

κ− κ̄

r
. (5)

The generalized Dirac equation reads

d
dr
G(r) = −T G(r) + [2M̄ + ε+ΣS −Σ0] F (r),

d
dr
F (r) = V G(r) + T F (r) . (6)

Thus, in this equation, the nucleon moves under the
influence of an additional effective potential transforming
its free-nucleon mass M to the effective mass M̄(r).

The case of exact PSS obtained in the limit
ΣS +Σ0 = 0 has been checked by Ginocchio in refs. [3]
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and [4]. He found, in this case, that not only the two
states of a pseudospin doublet (PSD) are degenerate but,
furthermore, their F functions are equal up to a phase
(hereafter, we shall denote this particular form of sym-
metry as PSS∗, whereas we keep the PSS notation for
the case in which only the degeneracy of the two pseu-
dospin partners is required). Ginocchio also claimed that,
although the limit ΣS +Σ0 = 0 is not realistic for atomic
nuclei, ΣS + Σ0 is small enough to explain the approxi-
mate degeneracy found for the states of some pseudospin
doublets and the similarity of their corresponding Fa and
Fb components [4].

3.1 Role of the nuclear surface

3.1.1 The nuclear surface prohibits the PSS∗

It would be interesting to investigate whether the con-
clusions obtained by Ginocchio for the states of a pseu-
dospin doublet (PSD) in the extremely simplified model
mentioned above with ΣS +Σ0 = 0 are, in fact, exclusive
among models generating unbound nuclei or they can be
also compatible with some more realistic models allowing
bound states. Thus, in this section, we shall try to deter-
mine whether the PSS∗ can be also realized in some of
these latter models.

In order to find such models, we can consider hypo-
thetical conditions under which the PSS∗ is supposed to
be exact. One possibility is to take the same value of κ̄
(κ̄ = 0, for instance) for the two states a and b of a PSD,
so that Fa and Fb satisfy the same equation (4). Then,
we assume that these two states are degenerate (εa = εb)
and they can be represented by the same F wave function.
The hypothetical nuclear model fulfilling these conditions
also should satisfy the Dirac equation (6) with κ̄ = 0. The
big component (G) of the Dirac spinor for the two states a
and b can be obtained by substituting F in the second line
of eq. (6) and taking for the κ parameter the value corre-
sponding to the state we are dealing with (i.e., κ = κa for
the a state or κ = κb for the b state). Hereafter, we shall
write the G function with the subscript κ to indicate the
state a (with κ = κa) or b (with κ = κb) of the PSD:

Gκ(r) =
1
V

[
d
dr
F (r) − κ

r
F (r)

]
. (7)

It is worth recalling that V becomes zero at r = r0
(as we are considering εa = εb, r0 is the same for the two
states a and b). Thus, in order to have the Gκ component
finite at r = r0, the factor in the brackets in eq. (7) must
be zero at r0. However, κa �= κb (notice that κa and κb

correspond to the physical states and are independent of
the parameter κ̄ entering eq. (4)). Consequently, if the
quantity in the brackets in eq. (7) becomes zero at r0 for
the a state it cannot become zero at the same point r0 for
the b state (which, by hypothesis, shares with the state
a the same function F (r)), except for the extreme case
in which F ′(r0) = F (r0) = 0. These conditions for F (r)
would imply, at least, that F (r) obtained from eq. (4) for

κ̄ = 0 would drastically differ from the physical Fa and Fb

functions obtained from the same equation with κ̄ = κa

and κ̄ = κb, respectively (with exponentially decreasing
asymptotic behaviour), showing the strong effect of the
κ̄ term in eq. (4) (or the κ term in eq. (3)) on the F (r)
function.

For the exact PSS∗ we are supposing, the normal case
(F (r0) �= 0 and F ′(r0) �= 0) would imply, due to the singu-
larity of the V −1 factor in eq. (7), that Ga or Gb were di-
vergent at r = r0 (actually, Gk(r) → +∞(−∞) as r → r−0
and Gk(r) → −∞(+∞) as r → r+0 for κ = κa or κ = κb)2.
Thus, for the case of exact PSS∗ and normal F (r) func-
tion, the singularity of the V −1 factor at the nuclear sur-
face does not allow to have two physical solutions for the
Gκ functions corresponding to the two states of a PSD.
In other words, the nuclear surface prevents, in contrast
to the commonly accepted point of view, the possibility of
the realization of the exact PSS∗ in finite nuclei, even in
the hypothetical limit κ̄ = 0, except for the extreme case
considered above (as we shall see later). This crucial re-
sult3 found under the hypothesis that the two degenerate
pseudospin partners share the same component F raises
the question whether, actually, eq. (4) admits two differ-
ent solutions for the F function with the same value of κ̄
and, if they exist, how much do they differ?

3.1.2 The nuclear surface prohibits the PSS for κ̄ = 0

To throw more light on the solutions of eqs. (4) and (6),
we have considered, the 40Ca nucleus, which has only one
PSD containing the states a ≡ 2s1/2 (κa = −1) and
b ≡ 1d3/2 (κb = 2), and worked out calculations within
the relativistic Hartree approximation and the successful
NL-SH [17] and NL3 [18] parameter sets.

We have tried to find two solutions of eq. (4) for the
same value of κ̄, by solving eq. (6), considered equiva-
lent to eq. (4), for κ = κa and κ = κb

4. These solutions
can include both the physical states when κ̄ = κ and the
non-physical ones when κ̄ �= κ. The results for the single-
particle energy (SPE) as a function of κ̄ are shown in
fig. 1. We have found two solutions for values of κ̄ ≤ κa

and only one acceptable solution for values of κ̄ in the
range κa < κ̄ ≤ κb. For κ̄ > κb, no acceptable solutions
have been found. The figure shows a very stiff variation of

2 Notice that if F (r0) = 0(�= 0) and F ′(r0) �= 0(= 0), both
Ga and Gb would be divergent at r0.

3 Although we have shown this result in the framework of
the relativistic Hartree approximation, this conclusion can be
considered quite general and not restricted to this approxima-
tion. The necessary condition is that V becomes zero in the
nuclear surface. Notice also that the singularity of the factor
V ′/V in eq. (4) limits the applicability of the usual theorems
of uniqueness of solutions to this equation.

4 We have used a standard fourth-order Runge-Kutta
method, imposing only the appropriate asymptotic conditions
on the G and F components, corresponding to ΣS = Σ0 = 0,
and avoiding the denominator V 2 in eq. (5) to become exactly
zero.
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Fig. 1. The neutron single-particle energy ε entering eq. (4) as
a function of κ̄ (which is considered as a real number) for the
NL-SH (full line) [17] and NL3 (dashed line) [18] parameter
sets. For κ̄ < −1 two almost degenerate solutions correspond-
ing to the non-physical single-particle states that exhibit the
same features as the 2s1/2 and 1d3/2 physical states have been
found (they should be degenerate in the exact calculation). The
solutions for κ̄ = −1 and κ̄ = 2 corresponding to the 2s1/2 and
1d3/2 physical states are indicated by dots (NL-SH) and stars
(NL3).

the SPE when the κ̄ value approaches the physical value
κ: κa or κb (with κ we represent the physical value κa or
κb corresponding to the state under consideration). This
result makes evident the extraordinary influence of the κ̄
term on the solutions of eq. (4) for values of κ̄ close to the
physical ones.

To understand this behavior, we notice that for κ̄ < κ,
M̄ → ∞ as r → r0, producing a drastic effect in eq. (6)
for r → r0. In fact, from eq. (6), it can be easily seen
that the F (r) and F ′(r) functions must approach zero as
r → r0 in order the G(r) and G′(r) functions remain finite
at r0. This strong modification of the F (r) function for
κ̄ → κ− is also reflected in the variation of the SPE ε as
a function of κ̄ in fig. 1. For κ̄ > κ, M̄ → −∞ as r → r0.
Now, the nucleons move under the influence of a very large
negative potential and, although mathematical solutions
of the Dirac equation do exist, they are not acceptable to
describe appropriately the physics of the system5. Thus,
being these solutions inadequate, from the physical point
of view, the possibility of the exact realization of the PSS
in the limit of small PSOP (or small κ term) is spoiled.

The results discussed above show that the contribu-
tion of the κ̄ term cannot be estimated by perturbation
theory if κ̄ � κ. Thus, the quasi-degeneracy of the 2s1/2

and 1d3/2 states of 40Ca in the NL-SH and NL3 parameter
sets cannot be explained by the smallness of the κ̄ term,
as has been considered in refs. [8–11]. In fact, the PSS can
be achieved with a κ̄ term which is not small. This term
strongly pushes up the SPE ε when κ̄ approaches the phys-

5 Under these conditions, the single-particle interpretation of
the Dirac equation is no longer valid.

ical values κa = −1 or κb = 2 for the 2s1/2 or 1d3/2 states,
respectively. Thus, for finite nuclei, the quasi-degeneracy
of two pseudospin levels (or PSS) can be achieved, in some
cases, the κ̄ term being big rather than small!

3.2 Interpretation of the PSS

In order to better understand how the PSS is achieved,
we have to consider in detail the different contributions to
the SPE ε in eq. (4). Firstly, we notice in fig. 1 that for
the b state the κ̄ term contribution (ε(κ̄)) to the SPE in
the region κa � κ̄ < κb is an increasing function almost
linear in the energy. This behaviour can be explained by
the perturbative character of the κ̄ term in this region
(i.e., the F wave function remains almost the same6). Ac-
tually, into the total perturbative contribution of the κ̄
term (ε(κ̄, ε)) to the SPE ε, we have also to include the
additional contribution (ε(Σ, ε)) coming from the terms
2εΣ0/2M and ε2/2M , which changes necessarily with κ̄
(through the modification of ε brought about by the mod-
ification of κ̄), although Fb remains unchanged. However,
as ε2/2M is very small, the SPE ε maintains, approxi-
mately, the linearity in κ̄. Then, considering ε(κ̄, ε), in
order for the PSS to be satisfied, it is necessary that the
sharp contribution to ε in fig. 1 were much larger for the
state a than for the state b. In fact, this is what actually
happens for all the PSDs of all nuclei, in particular for
the pseudospin doublet (PSD) of the 40Ca nucleus. The
reason is that the Fa and Ga wave functions of the PSDs
with κa < 0 take larger values for r � r0 than the Fb

and Gb wave functions with κb > 0. Then, as κ̄ becomes
smaller than κ, the effect of M̄ in eq. (4), which forces F to
approach zero at r0, becomes larger for the states a with
κa < 0 than for the states b with κb > 0. As a result, the
sharp contribution to the SPE ε in fig. 1 is much larger
for the state 2s1/2 than for the state 1d3/2, and allows
the almost exact PSS for this PSD. This behaviour of the
SPE shows that the PSS has a dynamical character. The
PSS comes about not as the result of an explicit symmetry
of the Dirac Hamiltonian but, rather, as a consequence of
the compensation of important contributions to the SPE ε
coming from different terms in the equation for F (r). This
conclusion is compatible with previous investigations [13,
14,16], and will be supported below with extra arguments.

Notice that, as follows from eq. (7), in order for Gκ(r)
to remain finite at r = r0, the quasi-degenerate states of a
PSD must have different F functions7. Then, the splitting
of the two levels of a PSD does not give us a precise infor-
mation about how different the corresponding F functions
of the two pseudospin partners are.

We have found two solutions of eqs. (4) or (6) for the
same value of κ̄ for κ̄ ≤ −1, which correspond to the a and

6 This happens because, in eqs. (4) and (6), the effect of M̄
as a function of κ̄ is smooth except for κ̄ → κ.

7 In fact, because of the contribution to the SPE ε of the κ
and 2εΣ0 terms in eq. (3), this is essential to have approximate
PSS.
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Fig. 2. The small component F of the Dirac spinor for the
2s1/2 physical neutron state (with κ̄ = κa = −1, full line) and
the 1d3/2 non-physical neutron state (with the non-physical
κ̄ = −1, dashed line), in the 40Ca nucleus.

Fig. 3. The same as in fig. 2, but now we take a non-physical
κ̄ = −1.2 for both the 2s1/2 and 1d3/2 neutron states.

b states. Figures 2 and 3 show the Fa and Fb functions cor-
responding to κ̄ = −1 and κ̄ = −1.2, respectively, for the
NL-SH set [17]. These solutions become almost degenerate
for κ̄ < −1. In fact, it can be seen in fig. 3, for the Dirac
spinors properly normalized, that these F functions are
almost proportional to each other, though their norms are
somewhat different. In order to compare properly these
two F functions, we have calculated the contributions of
the different terms entering eq. (4) to the SPE ε. Accord-
ing to this equation, we write the SPE as

ε(F ′′) + ε(F ′) + ε(Σ, ε) + ε(l̃) + ε(κ̄) = ε, (8)

where ε(F ′′), ε(F ′), ε(Σ, ε), ε(l̃) and ε(κ̄) represent the
contribution of the terms containing F ′′, F ′, Σ and/or ε,
l̃ and κ̄ in eq. (4), respectively. These contributions are
quoted in table 1 for the NL-SH set. These results show
that the proportionality between the two solutions is ob-
tained almost immediately for κ̄ < −1. In fact, for κ̄→ κ−

Table 1. Contributions of the terms entering eq. (7) to the
single-particle energy ε in 40Ca for the NL-SH [17] parameter
set. All quantities are in MeV.

κ State ε(F ′′) ε(F ′) ε(Σ, ε) ε(l̃) ε(κ̄) ε

−1.0 2s1/2 18.73 −0.63 −44.83 11.94 −1.38 −16.17
−1.0 1d3/2 13.64 3.66 −50.47 11.31 −1.79 −23.65

−1.05 2s1/2 13.82 3.59 −50.47 11.36 −1.86 −23.56
−1.05 1d3/2 13.66 3.68 −50.51 11.31 −1.89 −23.75

−1.1 2s1/2 13.72 3.67 −50.54 11.32 −1.97 −23.80
−1.1 1d3/2 13.70 3.68 −50.54 11.31 −1.98 −23.83

−1.2 2s1/2 13.72 3.71 −50.62 11.31 −2.17 −24.05
−1.2 1d3/2 13.73 3.71 −50.62 11.31 −2.17 −24.05

(but κ̄ �= κ) we expect that small numerical uncertainties
increase the differences of the contributions of the terms
given in table 1. Thus, our results for κ̄ < −1 are compat-
ible with two functions Fa and Fb exactly degenerate and
proportional to each other, corresponding to the extreme
case F ′(r0) = F (r0) = 0 considered in the sect. 3.1.1.
Then, in an exact calculation, fig. 1 should be slightly
modified so that the oblique part of the line correspond-
ing to Fa lies exactly over the oblique part of the line
corresponding to Fb, whereas the sharp part of Fa and
Fb should be exactly vertical. In fact, the sharply increas-
ing part represents the transition from the physical states
with κ̄ = κ, exhibiting normal asymptotic behaviour, to
the non-physical ones with κ̄ �= κ, satisfying the condi-
tion F ′(r0) = F (r0) = 0. Thus, the sharp part could be
also suppressed, representing only the oblique lines and
the points corresponding to the SPE ε of the two physical
states for each parameter set. In any case, the important
result is that, when κ̄ is slightly decreased from its cor-
responding physical value, the wave function F and its
eigenvalue ε are strongly modified, showing the essential
role the κ̄ term plays in eq. (4). In particular, this term
is responsible for the normal behaviour of the F (r) and
G(r) components of the physical states for r � r0. Thus, it
determines the nucleon density distribution in the nuclear
surface.

The proportionality between Fa and Fb found for
κ̄ < κa gives us a starting point to explain the similar-
ity of the F wave functions found in some PSDs of many
nuclei. The main reason is that, as we have noticed above,
Fb remains almost unchanged in the region κa � κ̄ < κb.
Then, as κ̄ → κ, M̄ → M in a similar way for the two
states a and b. Thus, the strong modification of M̄ for
κ̄ near κ produces important but similar modifications of
the Fa and Fb wave functions except near the point r0,
where the singularity strongly influences the behaviour of
Fa and Fb. Thus, Fa and Fb remain proportional in the
inner region of the nucleus. Of course, the region of pro-
portionality increases as r0 increases. This fact favors the
similarity of Fa and Fb in heavy nuclei.

In this kind of nuclei, it can be observed that the
similarity between Fa and Fb increases rapidly with the
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number of nodes (ñr) of these two components. This result
is mainly associated to the increasing of the contribution
of the term proportional to F ′′ in eq. (3) with ñr. Thus,
the effects of the other terms, including that of the κ term,
are, relatively, less important as F ′′ takes larger values.
The κ term always produces significant changes in F and
its effect is always essential; however, as ñr increases, the
effect on Fa and Fb becomes less asymmetric (i.e., more
similar). This seems to be an important point, although
not the only one, to understand the similarity between Fa

and Fb for ñr ≥ 3 in finite nuclei, rather than the fact
that ΣS � −Σ0, which is common for all PSDs and fails
if ñr = 2 although |εa| or |εb| were small.

Although in some cases the differences between Fa and
Fb near r0 seem to be not very important, they are always
essential because the quantity V −1 in eq. (7) acts as a
multiplicative factor that produces near r0 very large ef-
fects on the big component Gκ of the Dirac spinors. This
fact prohibits, for example, to obtain approximate Ga and
Gb big components near r0 from approximate Fa and Fb

components. Even when the big component of a state is
obtained from the corresponding big component of the
partner using the appropriate pseudospin algebra, there
appear important problems [7].

3.3 Role of the term proportional to V′ in the
equation for F

We have shown that the κ term cannot be considered
small. This fact can be mainly attributed to its divergence
at r0. Since this divergence is cancelled by the term con-
taining F ′ in eq. (3), it seems interesting to examine the
influence of the h(V ′) ≡ V ′

V

(
F ′
F − κ

r

)
term on the solu-

tions of eq. (3). Several authors have attributed the ap-
proximate PSS observed in nuclei to the smallness of |V ′|
[3–11]. If they were right, the breaking of the PSS brought
about by the h(V ′) term would be small. However, we have
observed that the direct contribution of this term to the
SPE ε is generally larger than the direct contribution of
the κ term. One can see in ref. [14] that, in fact, the two ad-
dends appearing in h(V ′) contribute coherently (i.e. ε(F ′)
and ε(κ) have the same sign). This result suggests that
the explanation of the PSS based on the smallness of |V ′|
is not adequate. Furthermore, although, in some cases,
eq. (3) without the term h(V ′) can admit normalizable
F (r) solutions, they cannot be considered as the approxi-
mate functions of the Fa and Fb components, because they
would produce from eq. (7), obviously, divergent Gκ(r)
functions at the singularity point. Thus, the h(V ′) term
is essential to get physical solutions from eq. (3). Its self-
consistent effects are very large, reinforcing the idea that
the PSS cannot be justified by the smallness of |V ′|.

3.4 Relation between spin-orbit and pseudospin-orbit
schemes

The Dirac equation (1) can be reduced to an equivalent
Schrödinger-like equation for the big component G. It

reads

−G′′ +
[
W ′

W

(
G′

G
+
κ

r

)
+
l(l + 1)
r2

+WV

]
G = 0 , (9)

where κ, V and W are defined in sect. 2 (see eq. (2)).
Equation (3) for F can be written in a similar form

as eq. (9) for G, but changing the sign of the κ term and
replacing W by V and l by l̃ everywhere.

Equations (3) and (9) formally establish a strong sim-
ilarity between the spin-orbit (LS) coupling scheme and
the pseudospin formalism. This similarity calls for study-
ing the relationship between them. The large energy split-
ting produced by the LS interaction in relation with the
splitting of many PSDs suggests that the κ term plays a
less important role in eq. (3) than in eq. (9). However,
what actually happens is just the opposite.

The gradual quenching of the κ term in eq. (9) pro-
duces a gradual reduction of the energy splittings of the
two spin-orbit partners. However, as we have mentioned
above, small variations of κ̄ in eq. (4) can produce very
strong modifications of the single-particle energy (SPE) ε
and the G and F wave functions. Furthermore, for κ̄ > κ
the Dirac equation cannot properly describe the state cor-
responding to κ. This very different behavior of the solu-
tions of eq. (4) (or eq. (3)) and eq. (9), as κ̄ or κ are
modified from their physical values, respectively, is due to
the fact that the κ term in eq. (9), can be switched off
by adding to V the quantity −W ′/W 2 × κ/r, which does
not bring a strong modification of V . However, as we have
explained above, to quench the κ̄ term in eq. (4) (or the
κ term in eq. (3)) it is necessary to introduce in the Dirac
equation a divergent term at r0, which crucially modifies
the behavior of the b state for r � r0, while this equation,
from the physical point of view, is no longer appropriate
to describe the a state. This strong difference in the LS
and pseudo-LS schemes is mainly due to the fact that
V (r) becomes zero at a certain value of r in the nuclear
surface for all single-particle bound states, whereas W (r),
which determines the LS interaction, is a positive and
large quantity everywhere in the nucleus. Thus, one can
find solutions of eq. (9) for real values of κ allowing a con-
tinuous and smooth (i.e., perturbative) transition between
the two states of a spin doublet (and even beyond). This
can be achieved, by allowing κ to vary between the two
values of κ corresponding to the two states of a spin dou-
blet (or even beyond). On the contrary, we have seen that
the solutions of eq. (4) for non-physical values of κ̄ do not
exhibit a good asymptotic behaviour and, consequently,
they cannot allow a continuous transition between the two
states of a pseudospin doublet (PSD).

Another aspect that is worth noting is that the two
states a and b of a PSD have values of j such that ja =
la + 1/2 and jb = lb − 1/2. Thus, in a simple shell model
approximation, in which the nucleons move in a central
potential and a LS potential, the LS term shifts the SPEs
εa and εb of the PSD in opposite directions. It means that
the splitting of the PSDs crucially depends on the strength
of the LS interaction. In this not self-consistent picture,
two states of a PSD can be forced to be degenerate if the
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LS interaction is adequately chosen [1,15]. However, in
general, this is not possible by choosing the magnitude of
ΣS +Σ0 compatible with bound nuclei.

For self-consistent models, the relationship between
the LS and pseudo-LS schemes is qualitatively similar,
although, in this case, the situation is more complicated
because there are additional contributions to the LS split-
tings of terms in the equation for G different from the
LS term, as a result of the self-consistent procedure. It
is also worth mentioning that a large LS force increases
the relative size of the F function in comparison to the G
component, favoring the similarity between Fa and Fb. In
fact, this similarity is appreciably spoiled, if the quantity
ΣS −Σ0 is arbitrarily reduced although the ΣS +Σ0 re-
mains unchanged. These facts confirm that the potential
ΣS−Σ0 plays a more essential role than theΣS+Σ0 one in
the PSS, in contrast with some conclusions of the previous
investigations [3–11]. All that shows that the PSS and LS
schemes are strongly related and the PSS cannot be un-
derstood independently of the LS interaction. In fact, in
the case with no LS interaction, the two energy levels of a
PSD would not be closer to each other than the remaining
states of the two spin-orbit doublets involved in the PSD.

3.5 The PSS in finite nuclei cannot be justified by the
smallness of |ΣS + Σ0|

As is considered in refs. [3–7], the exact PSS∗ can be ob-
tained if ΣS + Σ0 is neglected in V , i.e. if V = −ε in
eq. (2) (hereafter we shall designate this case as Model I).
Unfortunately, these conditions are incompatible with real
nuclei since they do not admit bound states. The single-
particle Dirac spinors corresponding to bound and un-
bound states are completely different. Thus, we believe
that the PSS properties of Model I cannot be extrapolated
to real nuclei8. In any case, if the PSS could be based on
the fact that |ΣS +Σ0| is small, it would mean, in partic-
ular, that the κ term and the h(V ′) term would be small
and, consequently, could be neglected in eq. (3). However,
we have shown in sect. 3.3 that this approximation brings
about unacceptable solutions of this equation.

It happens also that the main differences between Fa

and Fb occur for r � r0 due to the singularity of V ′/V .
However, near r0, V ′/V � (r−r0)−1, showing only a small
dependence on ΣS +Σ0 through the value of r0. All this
means that the PSS cannot be justified by the condition
that |ΣS +Σ0| is small.

8 Although this model predicts that Ea = Eb and Fa = Fb, if
the reason of the similarities εa � εb and Fa � Fb observed in
some cases were the small value of |ΣS + Σ0|, then, this prop-
erty should be exhibited, in a similar way, by all PSDs, and
should be regularly improved as |ΣS + Σ0| decreases (remain-
ing ΣS − Σ0 � unchanged). However, this behaviour seems
to be not very well respected, suggesting, at least, that other
factors should be considered in the explanation of this simi-
larity. Notice that the situation for the Coulomb potential is
different [3] because in this case the single-particle level density
becomes infinite as ε approaches the continuum.

New arguments to support this conclusion can be
found by taking into account the effect of the spin-orbit
interaction on the PSS discussed in sect. 3.4. The results
predicted in refs. [3–6] for the caseΣS+Σ0 = 0 are also ob-
tained when, furthermore, ΣS −Σ0 = 0 (Model II), which
means that there is no spin-orbit interaction. However, as
we have discussed above, an adequate spin-orbit interac-
tion is essential to get approximate PSS. Thus, we have
Model II that also predicts exact PSS for the states lying
in the continuum but, if this model were modified so that
ΣS +Σ0 took realistic values, the PSS would be consider-
ably spoiled in finite nuclei. Then, the approximate PSS
observed in certain pseudospin doublets of these systems
cannot be explained by the fact that |ΣS + Σ0| is small,
because ΣS + Σ0 = 0 in Models I and II but, however,
if model II were modified as we have explained above to
get bound nuclei, the PSS would be appreciably spoiled.
Thus, the magnitude of ΣS − Σ0, which determines the
spin-orbit interaction in finite nuclei, seems to be more
important in explaining the PSS than that of ΣS +Σ0.

4 Conclusions

To study the effect of the PSS breaking κ term in eq. (3)
for the small component F (r) of the nucleon Dirac spinor,
we have considered κ as a real parameter, which is denoted
by κ̄ in eq. (4), and we have constructed an equivalent
Dirac equation with the nucleon mass M replaced by an
effective mass M̄ containing κ̄.

With this equation, we have investigated the proper-
ties of the bound-state solutions of a quite general hypo-
thetical model satisfying the exact PSS∗ (i.e., εa = εb
and Fa = Fb for the two states of a PSD). We have
found that, because of the singularity of V −1 at r = r0
in the nuclear surface, the exact PSS∗ necessarily implies
F ′

a,b(r0) = Fa,b(r0) = 0. This result is important because
it means, in particular, that the physical solutions of a re-
alistic model corresponding to the states of a pseudospin
doublet are, necessarily, quite different from those of any
“approximate” model satisfying exact PSS∗.

Our results also show that, because of the singularity
of the factor V −1, the κ term is indeed very strong. This
term determines, in particular, the behaviour of the nu-
cleon wave functions for r � r0 and, consequently, also the
density distribution around the nuclear surface. In fact,
for κ̄ �= κ, F (r) = 0 for r ≥ r0. This strong modification
of F (r), as κ̄ differs from its physical value, means that
the two states of a pseudospin doublet cannot be continu-
ously connected by a continuous variation of κ̄, in contrast
to what happens with two states of a spin-orbit doublet.
For κ̄ > κ the nucleons move in a very negative effective
potential and the Dirac equation appears to be unable to
describe appropriately the physics of the system. This fact
would spoil the exact PSS even for the hypothetical case
corresponding to κ̄ = 0, in which the PSS is supposed
to be exact. We conclude that in finite nuclei, because of
the divergence of the quantity V ′/V due to the surface
effects, the PSS cannot be explained by the smallness of
the κ term.
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Our results also indicate that the PSS cannot be justi-
fied by the smallness of the |V ′| in eq. (3) either. Although
solutions of this equation without the h(V ′) term can be
found in some cases with ε < 0, they considerably differ
from the physical ones and, in any case, the G component
obtained from eq. (7) diverge at r0. Thus, in finite nuclei,
the explicit PSS exhibited by eq. (3) without the term
h(V ′) is mathematical rather than physical.

For these finite systems, there exist quasi-degenerate
PSDs, but their corresponding states have, necessarily, dif-
ferent F wave functions. Consequently, they can satisfy
the PSS with arbitrary precision but not the PSS∗. Thus,
the single-particle spectrum of a nucleus does not give a
precise idea of the degree of similarity between Fa and Fb

wave functions, i.e. of the degree of accomplishment of the
PSS∗. Our results for the 40Ca nucleus indicate that the
PSS can be exactly realized and it is compatible with the
PSS∗ strongly broken.

Using simple arguments, we have also shown that the
PSS in finite nuclei cannot be explained by the fact that
|ΣS +Σ0| is small, in contrast to the commonly accepted
point of view.

We have found that in the 40Ca nucleus, for κ̄ < κa,
the states a = 2s1/2 and b = 1d3/2, both solutions of
eqs. (4) and (6), are degenerate and their corresponding
F functions are proportional to each other. Then, the PSS
becomes exact (actually, it is a particular type of the PSS,
more general than the PSS∗). The PSS found for κ̄ < κa

in the 40Ca nucleus is a general result valid for all nuclei.
This important result allows us to propose a new inter-

pretation of the PSS, which is based not on the smallness
of the potential |ΣS + Σ0| or of the κ term, but, rather,
on the strong compensation of different contributions to
the SPE. The spin-orbit interaction, through the quantity
ΣS −Σ0, plays an essential role in this compensation. The
two states of a PSD cannot be connected in a perturbative
way through a continuous variation of κ̄, showing the dy-
namical character of the PSS. Furthermore, the PSS found
for κ̄ < κa supplies also the “key” to explain the similar-
ity between Fa and Fb in the inner region of the nuclei.
This similarity is favored by a large value of the number
of nodes ñr of F , which increases the relative importance

of the term proportional to F ′′ in eq. (3), and by a strong
spin-orbit interaction.
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